3.200 \(\int \frac{\sec ^4(e+f x)}{(a+b \sec ^2(e+f x))^2} \, dx\)

Optimal. Leaf size=82 \[ \frac{(a+2 b) \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{2 b^{3/2} f (a+b)^{3/2}}-\frac{a \tan (e+f x)}{2 b f (a+b) \left (a+b \tan ^2(e+f x)+b\right )} \]

[Out]

((a + 2*b)*ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b]])/(2*b^(3/2)*(a + b)^(3/2)*f) - (a*Tan[e + f*x])/(2*b*(a
+ b)*f*(a + b + b*Tan[e + f*x]^2))

________________________________________________________________________________________

Rubi [A]  time = 0.0823868, antiderivative size = 82, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {4146, 385, 205} \[ \frac{(a+2 b) \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{2 b^{3/2} f (a+b)^{3/2}}-\frac{a \tan (e+f x)}{2 b f (a+b) \left (a+b \tan ^2(e+f x)+b\right )} \]

Antiderivative was successfully verified.

[In]

Int[Sec[e + f*x]^4/(a + b*Sec[e + f*x]^2)^2,x]

[Out]

((a + 2*b)*ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b]])/(2*b^(3/2)*(a + b)^(3/2)*f) - (a*Tan[e + f*x])/(2*b*(a
+ b)*f*(a + b + b*Tan[e + f*x]^2))

Rule 4146

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fre
eFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/
2), x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && IntegerQ[n/2]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> -Simp[((b*c - a*d)*x*(a + b*x^n)^(p +
 1))/(a*b*n*(p + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(a*b*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /
; FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && (LtQ[p, -1] || ILtQ[1/n + p, 0])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sec ^4(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1+x^2}{\left (a+b+b x^2\right )^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac{a \tan (e+f x)}{2 b (a+b) f \left (a+b+b \tan ^2(e+f x)\right )}+\frac{(a+2 b) \operatorname{Subst}\left (\int \frac{1}{a+b+b x^2} \, dx,x,\tan (e+f x)\right )}{2 b (a+b) f}\\ &=\frac{(a+2 b) \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{2 b^{3/2} (a+b)^{3/2} f}-\frac{a \tan (e+f x)}{2 b (a+b) f \left (a+b+b \tan ^2(e+f x)\right )}\\ \end{align*}

Mathematica [A]  time = 0.310233, size = 84, normalized size = 1.02 \[ \frac{\frac{(a+2 b) \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{(a+b)^{3/2}}-\frac{a \sqrt{b} \sin (2 (e+f x))}{(a+b) (a \cos (2 (e+f x))+a+2 b)}}{2 b^{3/2} f} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[e + f*x]^4/(a + b*Sec[e + f*x]^2)^2,x]

[Out]

(((a + 2*b)*ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b]])/(a + b)^(3/2) - (a*Sqrt[b]*Sin[2*(e + f*x)])/((a + b)*
(a + 2*b + a*Cos[2*(e + f*x)])))/(2*b^(3/2)*f)

________________________________________________________________________________________

Maple [A]  time = 0.071, size = 106, normalized size = 1.3 \begin{align*} -{\frac{a\tan \left ( fx+e \right ) }{2\, \left ( a+b \right ) bf \left ( a+b+b \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }}+{\frac{a}{2\, \left ( a+b \right ) bf}\arctan \left ({\tan \left ( fx+e \right ) b{\frac{1}{\sqrt{ \left ( a+b \right ) b}}}} \right ){\frac{1}{\sqrt{ \left ( a+b \right ) b}}}}+{\frac{1}{f \left ( a+b \right ) }\arctan \left ({\tan \left ( fx+e \right ) b{\frac{1}{\sqrt{ \left ( a+b \right ) b}}}} \right ){\frac{1}{\sqrt{ \left ( a+b \right ) b}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)^4/(a+b*sec(f*x+e)^2)^2,x)

[Out]

-1/2*a*tan(f*x+e)/b/(a+b)/f/(a+b+b*tan(f*x+e)^2)+1/2/f*a/b/(a+b)/((a+b)*b)^(1/2)*arctan(tan(f*x+e)*b/((a+b)*b)
^(1/2))+1/f/(a+b)/((a+b)*b)^(1/2)*arctan(tan(f*x+e)*b/((a+b)*b)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^4/(a+b*sec(f*x+e)^2)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 0.572113, size = 936, normalized size = 11.41 \begin{align*} \left [-\frac{4 \,{\left (a^{2} b + a b^{2}\right )} \cos \left (f x + e\right ) \sin \left (f x + e\right ) +{\left ({\left (a^{2} + 2 \, a b\right )} \cos \left (f x + e\right )^{2} + a b + 2 \, b^{2}\right )} \sqrt{-a b - b^{2}} \log \left (\frac{{\left (a^{2} + 8 \, a b + 8 \, b^{2}\right )} \cos \left (f x + e\right )^{4} - 2 \,{\left (3 \, a b + 4 \, b^{2}\right )} \cos \left (f x + e\right )^{2} + 4 \,{\left ({\left (a + 2 \, b\right )} \cos \left (f x + e\right )^{3} - b \cos \left (f x + e\right )\right )} \sqrt{-a b - b^{2}} \sin \left (f x + e\right ) + b^{2}}{a^{2} \cos \left (f x + e\right )^{4} + 2 \, a b \cos \left (f x + e\right )^{2} + b^{2}}\right )}{8 \,{\left ({\left (a^{3} b^{2} + 2 \, a^{2} b^{3} + a b^{4}\right )} f \cos \left (f x + e\right )^{2} +{\left (a^{2} b^{3} + 2 \, a b^{4} + b^{5}\right )} f\right )}}, -\frac{2 \,{\left (a^{2} b + a b^{2}\right )} \cos \left (f x + e\right ) \sin \left (f x + e\right ) +{\left ({\left (a^{2} + 2 \, a b\right )} \cos \left (f x + e\right )^{2} + a b + 2 \, b^{2}\right )} \sqrt{a b + b^{2}} \arctan \left (\frac{{\left (a + 2 \, b\right )} \cos \left (f x + e\right )^{2} - b}{2 \, \sqrt{a b + b^{2}} \cos \left (f x + e\right ) \sin \left (f x + e\right )}\right )}{4 \,{\left ({\left (a^{3} b^{2} + 2 \, a^{2} b^{3} + a b^{4}\right )} f \cos \left (f x + e\right )^{2} +{\left (a^{2} b^{3} + 2 \, a b^{4} + b^{5}\right )} f\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^4/(a+b*sec(f*x+e)^2)^2,x, algorithm="fricas")

[Out]

[-1/8*(4*(a^2*b + a*b^2)*cos(f*x + e)*sin(f*x + e) + ((a^2 + 2*a*b)*cos(f*x + e)^2 + a*b + 2*b^2)*sqrt(-a*b -
b^2)*log(((a^2 + 8*a*b + 8*b^2)*cos(f*x + e)^4 - 2*(3*a*b + 4*b^2)*cos(f*x + e)^2 + 4*((a + 2*b)*cos(f*x + e)^
3 - b*cos(f*x + e))*sqrt(-a*b - b^2)*sin(f*x + e) + b^2)/(a^2*cos(f*x + e)^4 + 2*a*b*cos(f*x + e)^2 + b^2)))/(
(a^3*b^2 + 2*a^2*b^3 + a*b^4)*f*cos(f*x + e)^2 + (a^2*b^3 + 2*a*b^4 + b^5)*f), -1/4*(2*(a^2*b + a*b^2)*cos(f*x
 + e)*sin(f*x + e) + ((a^2 + 2*a*b)*cos(f*x + e)^2 + a*b + 2*b^2)*sqrt(a*b + b^2)*arctan(1/2*((a + 2*b)*cos(f*
x + e)^2 - b)/(sqrt(a*b + b^2)*cos(f*x + e)*sin(f*x + e))))/((a^3*b^2 + 2*a^2*b^3 + a*b^4)*f*cos(f*x + e)^2 +
(a^2*b^3 + 2*a*b^4 + b^5)*f)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{4}{\left (e + f x \right )}}{\left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)**4/(a+b*sec(f*x+e)**2)**2,x)

[Out]

Integral(sec(e + f*x)**4/(a + b*sec(e + f*x)**2)**2, x)

________________________________________________________________________________________

Giac [A]  time = 1.389, size = 126, normalized size = 1.54 \begin{align*} \frac{\frac{{\left (\pi \left \lfloor \frac{f x + e}{\pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (b\right ) + \arctan \left (\frac{b \tan \left (f x + e\right )}{\sqrt{a b + b^{2}}}\right )\right )}{\left (a + 2 \, b\right )}}{{\left (a b + b^{2}\right )}^{\frac{3}{2}}} - \frac{a \tan \left (f x + e\right )}{{\left (b \tan \left (f x + e\right )^{2} + a + b\right )}{\left (a b + b^{2}\right )}}}{2 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^4/(a+b*sec(f*x+e)^2)^2,x, algorithm="giac")

[Out]

1/2*((pi*floor((f*x + e)/pi + 1/2)*sgn(b) + arctan(b*tan(f*x + e)/sqrt(a*b + b^2)))*(a + 2*b)/(a*b + b^2)^(3/2
) - a*tan(f*x + e)/((b*tan(f*x + e)^2 + a + b)*(a*b + b^2)))/f